Wangchareansak T, et al. Influenza A virus molecularly imprinted polymers and their application in virus sub-type classification. J Mater Chem B. 2013 Apr 28;1(16):2190-2197
In this work, we apply a molecular imprinting strategy as a screening protocol for different influenza A subtypes, namely H5N1, H5N3, H1N1, H1N3 and H6N1. Molecularly imprinted polymers for each of these subtypes lead to appreciable sensor characteristics on a quartz crystal microbalance leading to detection limits as low as 105 particles per ml. Selectivity studies indicate that each virus is preferably incorporated by its own MIP. Recognition in most cases is dominated by the neuraminidase residue rather than the hemagglutinin. Multivariate analysis shows that the sensor responses can be correlated with the differences in hemagglutinin and neuraminidase patterns from databases. This allows for virus subtype characterization and thus rapid screening.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 21 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 21 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 21 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 21 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


