Yu Z, Cheng K, Wang T, Ren Z, Wu J, He H, Gao Y. Two mutations in viral protein enhance the adaptation of waterfowl-origin H3N2 virus in murine model. Virus Res. 2019 Jun 4. pii: S0168-1702(19)30049-8
After serial passage of a waterfowl-origin H3N2 subtype avian influenza virus in BALB/c mice, we obtained H3N2 mouse-adapted variants and identified eight amino acid substitutions in five viral proteins in our previous study. Here, we analyze the key mutations determining viral pathogenicity in mammals. We found that both PB2-D701?N mutation and M1-M192?V mutation were implicated in the viral pathogenic phenotypic variation of H3N2 avian influenza virus in mice. Furthermore, we found that PB2-D701?N could enhance viral replication in vitro and in vivo and expanded viral tissue tropism. Our data suggest that PB2-D701?N and M1-M192?V are the virulence markers of H3N2 avian influenza virus, and these markers can be used in the trans-species transmission surveillance for the H3N2 avian influenza virus.
See Also:
Latest articles in those days:
- Autoantibodies neutralizing type I IFNs in a fatal case of H5N1 avian influenza 4 minute(s) ago
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 22 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 22 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 22 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 23 hours ago
[Go Top] [Close Window]


