Akand EH, Downard KM. Mechanisms of Antiviral Resistance in Influenza Neuraminidase Revealed by a Mass Spectrometry Based Phylonumerics Approach. Mol Phylogenet Evol. 2019 Mar 20
A mass based phylonumerics approach is shown to be able to investigate the origins of the emergence of antiviral resistance mutations in influenza neuraminidase through a global view of mutational trends. Frequent ancestral and descendant mutations that precede and follow the manifestation of antiviral resistance mutations are identified in N2 neuraminidase. The majority occur in the head region around the active site and drive hydrophilicity changes, primarily through the incorporation or loss of hydroxyl groups. These increase or reduce the accessibility of the site to the bulk solvent. The most frequent ancestral mutations that occur on at least two occasions are I/L307M, G/A414S/T, I312T, I/L307S, P386S and S367N; the latter introducing a glycosylation site. The most frequent descendant mutation, after incorporation of an antiviral resistance mutation, is D/E401G/A. Together with others observed, this restore the protein´s hydrophobicity about the active site region that limits entry of a sialic acid or inhibitor molecule and reduces viral fitness. The results of this global in silico phylonumerics study demonstrate that evolutionary mechanisms and functionally linked or compensatory mutations, remote in the sequence or structure, can be identified and interrogated at a molecular level.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 22 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 22 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 22 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 22 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


