Takizawa N, et al. Local structural changes of the influenza A virus ribonucleoprotein complex by single mutations in the specific residues involved in efficient genome packaging. Virology. 2019 Mar 7;531:126-140
The influenza A virus genome consists of eight single-stranded negative-sense RNA segments. The noncoding regions located at the 3´- and 5´- ends of each segment are necessary for genome packaging, and the terminal coding regions are required to precisely bundle the eight segments. However, the nucleotide residues important for genome bundling are not defined. Here, we introduced premature termination codons in the hemagglutinin (HA) or matrix protein 2 (M2) gene and constructed virus libraries containing random sequences in the terminal coding regions. Using these virus libraries, we identified nucleotide residues involved in efficient virus propagation. Viral genome packaging was impaired in viruses that contained single mutations at these identified residues. Furthermore, these single mutations altered the local structure of the viral ribonucleoprotein complex. Our results show that specific nucleotide residues in the viral protein coding region are involved in forming the precise structure of the viral ribonucleoprotein complex.
See Also:
Latest articles in those days:
- Host restriction factor SAMHD1 does not restrict seasonal influenza virus replication in human epithelial or macrophage-like cells 15 hours ago
- Enhancing the stability of Influenza A reporter viruses by recoding the gfp gene 15 hours ago
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 3 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 3 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 3 days ago
[Go Top] [Close Window]


