Wang Z, et al. Enhanced cross-lineage protection induced by recombinant H9N2 avian influenza virus inactivated vaccine. Vaccine. 2019 Feb 20.
BACKGROUND:
Antigenic drift of H9N2 low pathogenic avian influenza viruses (AIV) may result in vaccination failure in the poultry industry and thus a cross-protective vaccine against H9N2 AIV is highly desirable.
METHODS:
A series of H9N2 recombinant viruses with the internal genes of A/Puerto Rico/8/34 (H1N1, PR8) were generated, based on the compatibility between HA and NA, the effect of HA deglycosylation, and protective antigenic epitopes in HA. After evaluation of their biological and immunological characteristics, three recombinant AIVs with the internal genes of the Y280-like strain SN were selected for protective efficacy studies.
RESULTS:
The recombinant viruses rHASNNA3, rHASN-△200, rHASN-△287, and rHASN-R92G-E93K displayed good cross reactivity and induced higher neutralization antibody titers against both SN and the F98-like strain YZ4. Furthermore, those recombinant viruses had a higher EID50 in chicken embryos after the replacement of internal-gene backbone from PR8 to SN. The rSNHA-△200 induced better protection in immunized chickens against challenge of homologous and heterologous H9N2 avian influenza viruses when compared with the wild type strain.
CONCLUSION:
The recombinant virus rSNHA-△200 can be used as a potential broad-spectrum vaccine against H9N2 avian influenza.
Antigenic drift of H9N2 low pathogenic avian influenza viruses (AIV) may result in vaccination failure in the poultry industry and thus a cross-protective vaccine against H9N2 AIV is highly desirable.
METHODS:
A series of H9N2 recombinant viruses with the internal genes of A/Puerto Rico/8/34 (H1N1, PR8) were generated, based on the compatibility between HA and NA, the effect of HA deglycosylation, and protective antigenic epitopes in HA. After evaluation of their biological and immunological characteristics, three recombinant AIVs with the internal genes of the Y280-like strain SN were selected for protective efficacy studies.
RESULTS:
The recombinant viruses rHASNNA3, rHASN-△200, rHASN-△287, and rHASN-R92G-E93K displayed good cross reactivity and induced higher neutralization antibody titers against both SN and the F98-like strain YZ4. Furthermore, those recombinant viruses had a higher EID50 in chicken embryos after the replacement of internal-gene backbone from PR8 to SN. The rSNHA-△200 induced better protection in immunized chickens against challenge of homologous and heterologous H9N2 avian influenza viruses when compared with the wild type strain.
CONCLUSION:
The recombinant virus rSNHA-△200 can be used as a potential broad-spectrum vaccine against H9N2 avian influenza.
See Also:
Latest articles in those days:
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 1 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 1 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 1 days ago
- Salpingitis and multiorgan lesions caused by highly pathogenic avian influenza A(H5N1) virus in a cat associated with consumption of recalled raw milk in California 1 days ago
- Detection of highly pathogenic avian influenza A(H5N1) virus 2.3.4.4b in alpacas 1 days ago
[Go Top] [Close Window]


