Fleming-Canepa X, et al. Duck innate immune responses to high and low pathogenicity H5 avian influenza viruses. Vet Microbiol. 2019 Jan;228:101-111
Ducks are the reservoir host of influenza A viruses, and are permissive for replication of most strains, yet can elicit robust innate immune responses to highly pathogenic strains. Tissue tropism and viral amino acid differences affect virulence, but we have limited knowledge about how viral differences influence the host innate immune response. Here we compare the innate immune response in Pekin ducks to a recombinant highly-pathogenic avian influenza (HPAI) H5N1 virus and a naturally arising attenuated variant of this strain that differs at one amino acid in polymerase A (T515A), as well as ducks infected with two different H5 strains of low pathogenic avian influenza (LPAI). Using qPCR we examined the relative abundance of transcripts for RIG-I and interferon-beta (IFNβ), and downstream interferon stimulated genes (ISGs). The polymerase PA (T515A) mutation did not significantly affect replication in vivo but greatly attenuated host interferon responses. ISG induction was robust for both H5N1 strains, but was three times lower for the PA mutant strain. Low pathogenic viruses elicited detectable induction of RIG-I, IFNβ and ISGs in lung and intestine tissues that correlated with the recovery of viruses from tracheal or cloacal swabs. Several genes in the MAVS signaling pathway were also upregulated by H5N1, which contributed to further amplification of the signal. We also examined hematoxylin-eosin stained tissue sections and observe evidence of lung pathology and splenocyte depletion with both H5N1 viruses at 3 dpi, and recovery by 6 dpi. However, for both H5N1 strains we observed inflammation around neurons in brain, with increased cytokine expression in some individuals. Our findings reveal HPAI H5N1 viruses induced stronger innate immune responses to the infection, while LPAI viruses elicit a milder response.
See Also:
Latest articles in those days:
- Host restriction factor SAMHD1 does not restrict seasonal influenza virus replication in human epithelial or macrophage-like cells 12 hours ago
- Enhancing the stability of Influenza A reporter viruses by recoding the gfp gene 12 hours ago
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 3 days ago
[Go Top] [Close Window]


