Abdul-Cader MS, et al. Antiviral response elicited against avian influenza virus infection following activation of toll-like receptor (TLR)7 signaling pathway is attributable to interleukin (IL)-1β production. BMC Res Notes. 2018 Dec 4;11(1):859.
OBJECTIVE:
Single stranded ribonucleic acid (ssRNA) binds to toll-like receptor (TLR)7 leading to recruitment of immune cells and production of pro-inflammatory cytokines, which has been shown in mammals. In chickens, ssRNA has been shown to elicit antiviral response against infectious bursal disease virus infection. The objectives of this study were to determine the pro-inflammatory mediators that are activated downstream of TLR7 signaling pathway in avian macrophages and their roles in antiviral response against avian influenza virus (AIV) infection.
RESULTS:
In this study, first, we stimulated avian macrophages with the analog of ssRNA, resiquimod, and found that the ssRNA was capable of increasing nitric oxide (NO) and interleukin (IL-1β) production in avian macrophages. Second, we observed when the avian macrophages were stimulated with ssRNA, it elicits an antiviral response against AIV. Finally, we demonstrated that when we blocked the IL-1β response using IL-1 receptor antagonist (IL-1Ra) and the NO production using a selective inhibitor of inducible nitric oxide synthase (iNOS), N-([3-(aminomethyl)phenyl]methyl)ethanimidamide dihydrochloride (1400 W), the antiviral response against AIV is attributable to IL-1β production and not to the NO production. This study provides insights into the mechanisms of antiviral response mediated by ssRNA, particularly against AIV infection.
Single stranded ribonucleic acid (ssRNA) binds to toll-like receptor (TLR)7 leading to recruitment of immune cells and production of pro-inflammatory cytokines, which has been shown in mammals. In chickens, ssRNA has been shown to elicit antiviral response against infectious bursal disease virus infection. The objectives of this study were to determine the pro-inflammatory mediators that are activated downstream of TLR7 signaling pathway in avian macrophages and their roles in antiviral response against avian influenza virus (AIV) infection.
RESULTS:
In this study, first, we stimulated avian macrophages with the analog of ssRNA, resiquimod, and found that the ssRNA was capable of increasing nitric oxide (NO) and interleukin (IL-1β) production in avian macrophages. Second, we observed when the avian macrophages were stimulated with ssRNA, it elicits an antiviral response against AIV. Finally, we demonstrated that when we blocked the IL-1β response using IL-1 receptor antagonist (IL-1Ra) and the NO production using a selective inhibitor of inducible nitric oxide synthase (iNOS), N-([3-(aminomethyl)phenyl]methyl)ethanimidamide dihydrochloride (1400 W), the antiviral response against AIV is attributable to IL-1β production and not to the NO production. This study provides insights into the mechanisms of antiviral response mediated by ssRNA, particularly against AIV infection.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 21 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 21 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 21 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 21 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


