Cheng X. etc., al.. Using an innovative method to develop the threshold of seasonal influenza epidemic in China. PLoS One. 2018 Aug 31;13(8):e0202880.
Background
Proper early warning thresholds for defining seasonal influenza epidemics are crucial for timely engagement of intervention strategies, but are currently not well established in China. We propose a novel moving logistic regression method (MLRM) to determine epidemic thresholds and validate them with the Chinese influenza surveillance data.
Methods
For each province, historical epidemic waves are formed as weekly percentages of laboratory-confirmed patients among all clinically diagnosed influenza cases. For each epidemic curve that is approximately symmetric, a series of logistic curves are fitted to increasing temporal range of the epidemic, and the threshold is determined based on the best-fitting logistic curve.
Results
Using surveillance data of seasonal influenza collected during 2010–2014 in 30 provinces of China, we screened 153 epidemic waves and identified 100 as approximately symmetric; and 85 of the 100 waves were satisfactorily fitted. Compared to two published approaches, the MLRM identified lower thresholds of seasonal influenza epidemics, leading to about three weeks earlier detection of onset and about four weeks later detection of closure of the epidemics. The potential misclassification proportion of influenza epidemic waves was 6% for the MLRM, comparable to that for the two published approaches.
Conclusions
The MLRM offers an alternative to existing methods for defining early warning thresholds for the surveillance of seasonal influenza, and can be readily generalized to other countries and other infectious agents. The thresholds we identified can be used for early detection of future influenza epidemics in China.
Proper early warning thresholds for defining seasonal influenza epidemics are crucial for timely engagement of intervention strategies, but are currently not well established in China. We propose a novel moving logistic regression method (MLRM) to determine epidemic thresholds and validate them with the Chinese influenza surveillance data.
Methods
For each province, historical epidemic waves are formed as weekly percentages of laboratory-confirmed patients among all clinically diagnosed influenza cases. For each epidemic curve that is approximately symmetric, a series of logistic curves are fitted to increasing temporal range of the epidemic, and the threshold is determined based on the best-fitting logistic curve.
Results
Using surveillance data of seasonal influenza collected during 2010–2014 in 30 provinces of China, we screened 153 epidemic waves and identified 100 as approximately symmetric; and 85 of the 100 waves were satisfactorily fitted. Compared to two published approaches, the MLRM identified lower thresholds of seasonal influenza epidemics, leading to about three weeks earlier detection of onset and about four weeks later detection of closure of the epidemics. The potential misclassification proportion of influenza epidemic waves was 6% for the MLRM, comparable to that for the two published approaches.
Conclusions
The MLRM offers an alternative to existing methods for defining early warning thresholds for the surveillance of seasonal influenza, and can be readily generalized to other countries and other infectious agents. The thresholds we identified can be used for early detection of future influenza epidemics in China.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 12 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 12 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 12 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 13 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


