Peng C, etc.,al. Protective efficacy of an inactivated chimeric H7/H5 avian influenza vaccine against highly pathogenic avian influenza H7N9 and clade 2.3.4.4 H5 viruses. Vet Microbiol. 2018 Sep;223:21-26
The highly pathogenic avian influenza (HPAI) H5 and H7N9 viruses pose a serious challenge to public health and the poultry industry in China. In this study, we generated a chimeric H7/H5 recombinant virus that expressed the entire HA1 region of the HPAI A/chicken/Guangdong/RZ/2017(H7N9) virus and the HA2 region of the HPAI A/chicken/Fujian/5/2016(H5N6) viruses. The resulting chimeric PR8-H7/H5 virus exhibited similar growth kinetics as the parental PR8-H5 and PR8-H7 viruses in vitro. The inactivated chimeric PR8-H7/H5 vaccine induced specific, cross-reactive hemagglutination inhibition antibodies against the H7 virus only but induced serum-neutralizing antibodies against both H7 and H5 viruses. Furthermore, the inactivated chimeric PR8-H7/H5 vaccine significantly reduced virus shedding and protected chickens from challenge with the HPAI H5N6 and H7N9 viruses. Our results suggested that the inactivated chimeric PR8-H7/H5 vaccine was effective against HPAI H5 and H7N9 viruses in chickens.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 20 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 20 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 21 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 21 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


