Wu Y, etc.,al. Prenatal influenza vaccination rescues impairments of social behavior and lamination in a mouse model of autism. J Neuroinflammation. 2018 Aug 13;15(1):228
BACKGROUND:
Prenatal infection is a substantial risk factor for neurodevelopmental disorders such as autism in offspring. We have previously reported that influenza vaccination (VAC) during early pregnancy contributes to neurogenesis and behavioral function in offspring.
RESULTS:
Here, we probe the efficacy of VAC pretreatment on autism-like behaviors in a lipopolysaccharide (LPS)-induced maternal immune activation (MIA) mouse model. We show that VAC improves abnormal fetal brain cytoarchitecture and lamination, an effect associated with promotion of intermediate progenitor cell differentiation in MIA fetal brain. These beneficial effects are sufficient to prevent social deficits in adult MIA offspring. Furthermore, whole-genome analysis suggests a strong interaction between Ikzf1 (IKAROS family zinc-finger 1) and neuronal differentiation. Intriguingly, VAC rescues excessive microglial Ikzf1 expression and attenuates microglial inflammatory responses in the MIA fetal brain.
CONCLUSIONS:
Our study implies that a preprocessed influenza vaccination prevents maternal bacterial infection from causing neocortical lamination impairments and autism-related behaviors in offspring.
Prenatal infection is a substantial risk factor for neurodevelopmental disorders such as autism in offspring. We have previously reported that influenza vaccination (VAC) during early pregnancy contributes to neurogenesis and behavioral function in offspring.
RESULTS:
Here, we probe the efficacy of VAC pretreatment on autism-like behaviors in a lipopolysaccharide (LPS)-induced maternal immune activation (MIA) mouse model. We show that VAC improves abnormal fetal brain cytoarchitecture and lamination, an effect associated with promotion of intermediate progenitor cell differentiation in MIA fetal brain. These beneficial effects are sufficient to prevent social deficits in adult MIA offspring. Furthermore, whole-genome analysis suggests a strong interaction between Ikzf1 (IKAROS family zinc-finger 1) and neuronal differentiation. Intriguingly, VAC rescues excessive microglial Ikzf1 expression and attenuates microglial inflammatory responses in the MIA fetal brain.
CONCLUSIONS:
Our study implies that a preprocessed influenza vaccination prevents maternal bacterial infection from causing neocortical lamination impairments and autism-related behaviors in offspring.
See Also:
Latest articles in those days:
- Host restriction factor SAMHD1 does not restrict seasonal influenza virus replication in human epithelial or macrophage-like cells 7 hours ago
- Enhancing the stability of Influenza A reporter viruses by recoding the gfp gene 7 hours ago
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
[Go Top] [Close Window]


