Rim A, Nacira L, Abdeljelil G.. Viral interference between Low Pathogenic Avian Influenza H9N2 and avian infectious bronchitis viruses in vitro and in ovo. J Virol Methods. 2018 Jun 22
BACKGROUND:
Low pathogenic avian influenza (LPAI) H9N2 and infectious bronchitis virus (IBV) are important pathogens of poultry, causing important economic losses for the sector. Replication interference between these two viruses was described using cell cultures (CC) and embryonated chicken eggs (ECE). Chicken embryo lung (CEL) and ECE were simultaneously or sequentially infected with IBV vaccine strain (H120) and LPAIV-H9N2 (A/Ck/TUN/145/2012) to evaluate viral interactionsin vitro and in ovo, respectively. Real-time RT-PCR was developed to specifically quantify both AIV and IBV genomes as well as viral gene copy numbers during mixed infections. The amount of IL-1 beta, in supernatants of co-infected cell cultures, was determined using an ELISA assay.
RESULTS:
Quantitative results of AIV and IBV co-infection showed that interferences between the two viruses yielded decreased viral growth. However, in the case of super-infection, the second virus, either AIV or IBV, induced a decrease in the growth of the first inoculated virus.
CONCLUSION:
It appears that either AIV or IBV has a negative impact on the other virus growth when they are inoculated simultaneously or sequentially. The ELISA results showed that higher level of secreted IL-1beta varies, depending on the viral interference conditions between both viruses, during mixed infections.
Low pathogenic avian influenza (LPAI) H9N2 and infectious bronchitis virus (IBV) are important pathogens of poultry, causing important economic losses for the sector. Replication interference between these two viruses was described using cell cultures (CC) and embryonated chicken eggs (ECE). Chicken embryo lung (CEL) and ECE were simultaneously or sequentially infected with IBV vaccine strain (H120) and LPAIV-H9N2 (A/Ck/TUN/145/2012) to evaluate viral interactionsin vitro and in ovo, respectively. Real-time RT-PCR was developed to specifically quantify both AIV and IBV genomes as well as viral gene copy numbers during mixed infections. The amount of IL-1 beta, in supernatants of co-infected cell cultures, was determined using an ELISA assay.
RESULTS:
Quantitative results of AIV and IBV co-infection showed that interferences between the two viruses yielded decreased viral growth. However, in the case of super-infection, the second virus, either AIV or IBV, induced a decrease in the growth of the first inoculated virus.
CONCLUSION:
It appears that either AIV or IBV has a negative impact on the other virus growth when they are inoculated simultaneously or sequentially. The ELISA results showed that higher level of secreted IL-1beta varies, depending on the viral interference conditions between both viruses, during mixed infections.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 19 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 19 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 19 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 19 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


