Huang CG, Lee LA, Wu YC, Hsiao MJ. A pilot study on primary cultures of human respiratory tract epithelial cells to predict patients´ responses to H7N9 infection. Oncotarget. 2018 Feb 20;9(18):14492-14508
Avian influenza A(H7N9) virus infections frequently lead to acute respiratory distress syndrome and death in humans. We aimed to investigate whether primary cultures of human respiratory tract epithelial cells are helpful to understand H7N9 virus pathogenesis and tissue tropism, and to evaluate how patient-related characteristics can affect the host´s response to infection. Normal human bronchial epithelial cells (isolated from two different donors) and primary epithelial cells (harvested from 27 patients undergoing airway surgery) were experimentally infected with H7N9 and/or H1N1pdm for 72 h. After virus infection, the culture media were collected for viral RNA quantitation and cytokine detection. Both H7N9 and H1N1pdm viruses replicated and induced a cytokine response differently for each donor in the normal human bronchial epithelial model. H7N9 replicated equivalently in epithelial cells harvested from the inferior turbinate and paranasal sinus, and those from the larynx and bronchus, at 72 h post-infection. Viral RNA quantity at 72 h was significantly higher in patients aged 21-64 years than in patients aged ≥ 65 years; however, no effects of sex, medical comorbidities, and obesity were noted. H7N9-infected cultured cells released multiple cytokines within 72 h. Levels of interleukin-1β, interleukin-6, interleukin-8, interferon-γ, and tumor necrosis factor-α were associated differently with patient-related characteristics (such as age, sex, obesity, and medical comorbidities). In the era of precision medicine, these findings illustrate the potential utility of this primary culture approach to predict a host´s response to H7N9 infection or to future infection by newly emerging viral infections, and to dissect viral pathogenesis.
See Also:
Latest articles in those days:
- Host restriction factor SAMHD1 does not restrict seasonal influenza virus replication in human epithelial or macrophage-like cells 5 hours ago
- Enhancing the stability of Influenza A reporter viruses by recoding the gfp gene 5 hours ago
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
[Go Top] [Close Window]


