Takizawa N, Kimura T, Watanabe T, Shibasaki M, et. Anti-influenza virus activity of a salcomine derivative mediated by inhibition of viral RNA synthesis. Arch Virol 2018 Mar 1
Influenza virus infection is a major threat to global health. Although vaccines and anti-influenza virus drugs are available, annual influenza virus epidemics result in severe illness, and an influenza pandemic occurs every 20-30 years. To identify candidate anti-influenza virus compounds, we screened approximately 5,000 compounds in an in-house library. We identified MZ7465, a salcomine derivative, as a potent inhibitor of influenza virus propagation. We analyzed the antiviral propagation mechanism of the hit compound by determining the amounts of viral proteins and RNA in infected cells treated with or without the hit compound. Treatment of infected cells with MZ7465 decreased both viral protein and RNA synthesis. In addition, an in vitro assay showed that viral RNA synthesis was directly inhibited by MZ7465. These results suggest that salcomine and its derivatives are potential candidates for the treatment of influenza virus infections.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 19 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 19 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 19 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 19 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


