Xiang D, Shen X, Pu Z, Irwin DM, et al. Convergent Evolution of Human-Isolated H7N9 Avian Influenza A Viruses. J Infect Dis 2018 Feb 9
Background: Avian influenza A virus (AIV) H7N9 has caused five epidemic waves of human infections in China since 2013. AIVs may face strong selection to adapt to novel conditions when establishing themselves in humans. In this study, we sought to determine whether adaptive evolution had occurred in human-isolated H7N9 viruses.
Methods: We evaluated all available genomes of H7N9 AIVs. Maximum likelihood trees were separately reconstructed for all eight genes. Signals of positive selection and convergent evolution were then detected on branches that lead to changes in host tropism (from avian to human).
Results: We found that three genes had significant signals of positive selection. In addition, we detected 34 sites having significant signals for parallel evolution in eight genes, including seven well-known sites (Q591K, E627K and D701N in PB2 gene, R156K, V202A and L244Q in HA, and R289K in NA) that play roles in crossing species barriers for AIVs.
Conclusion: Our study suggests that during infection in humans, H7N9 viruses have undergone adaptive evolution to adapt to their new host environment, and that the sites where parallel evolution occurred might play roles in crossing species barriers and respond to the new selection pressures arising from their new host environments.
Methods: We evaluated all available genomes of H7N9 AIVs. Maximum likelihood trees were separately reconstructed for all eight genes. Signals of positive selection and convergent evolution were then detected on branches that lead to changes in host tropism (from avian to human).
Results: We found that three genes had significant signals of positive selection. In addition, we detected 34 sites having significant signals for parallel evolution in eight genes, including seven well-known sites (Q591K, E627K and D701N in PB2 gene, R156K, V202A and L244Q in HA, and R289K in NA) that play roles in crossing species barriers for AIVs.
Conclusion: Our study suggests that during infection in humans, H7N9 viruses have undergone adaptive evolution to adapt to their new host environment, and that the sites where parallel evolution occurred might play roles in crossing species barriers and respond to the new selection pressures arising from their new host environments.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 19 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 19 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 19 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 19 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


