Skowronski Danuta M, Chambers Catharine,etc.,al. Early season co-circulation of influenza A(H3N2) and B(Yamagata): interim estimates of 2017/18 vaccine effectiveness, Canada, January 2018. Euro Surveill. 2018;23(5):pii=18-00035
The 2017/18 influenza season in Canada has been characterised by co-circulation of influenza A(H3N2) and B(Yamagata) viruses, the latter unusual so early in the season [1]. Most European countries are also experiencing simultaneous influenza A and B epidemics, with B(Yamagata) predominating [2], whereas the United States (US) has experienced a substantial epidemic due predominantly to influenza A(H3N2) [3].
The 2017/18 trivalent influenza vaccine (TIV) includes influenza A/Hong Kong/4801/2014(H3N2)-like (clade 3C.2a) and B/Brisbane/60/2008(Victoria-lineage)-like (clade 1A) antigens. The quadrivalent influenza vaccine (QIV) contains an additional influenza B/Phuket/3073/2013(Yamagata-lineage)-like (clade 3) antigen. The same components were included in the 2016/17 northern and 2017 southern hemisphere vaccines [4].
Low vaccine effectiveness (VE) for the 2017/18 season has been anticipated following the interim report from Australia indicating VE of just 10% during its 2017 influenza A(H3N2) epidemic [5]. In the context of exclusive QIV use, Australia reported higher VE of 57% against co-circulating influenza B viruses [5]. Here we report interim 2017/18 VE estimates for influenza A(H3N2) and influenza B from participating provinces of the Canadian Sentinel Practitioner Surveillance Network (SPSN), where QIV comprised less than one third of vaccine doses distributed overall through the publicly funded campaign.
The 2017/18 trivalent influenza vaccine (TIV) includes influenza A/Hong Kong/4801/2014(H3N2)-like (clade 3C.2a) and B/Brisbane/60/2008(Victoria-lineage)-like (clade 1A) antigens. The quadrivalent influenza vaccine (QIV) contains an additional influenza B/Phuket/3073/2013(Yamagata-lineage)-like (clade 3) antigen. The same components were included in the 2016/17 northern and 2017 southern hemisphere vaccines [4].
Low vaccine effectiveness (VE) for the 2017/18 season has been anticipated following the interim report from Australia indicating VE of just 10% during its 2017 influenza A(H3N2) epidemic [5]. In the context of exclusive QIV use, Australia reported higher VE of 57% against co-circulating influenza B viruses [5]. Here we report interim 2017/18 VE estimates for influenza A(H3N2) and influenza B from participating provinces of the Canadian Sentinel Practitioner Surveillance Network (SPSN), where QIV comprised less than one third of vaccine doses distributed overall through the publicly funded campaign.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 10 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 10 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 10 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 10 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 1 days ago
[Go Top] [Close Window]


