Zhu L, Liu L, Zhang Y, Pu L, et al.. High Level of Neutrophil Extracellular Traps Correlates With Poor Prognosis of Severe Influenza A Infection. J Infect Dis 2018;217:428-437
Background: Most patients with severe infection with influenza A virus (IAV) progress to acute respiratory distress syndrome and even multiple organ dysfunction syndrome (MODS). Neutrophil extracellular traps (NETs) can be induced by pathogens and are responsible for immune tissue damage. We conducted a prospective study on the production and effects of NETs in H7N9 and H1N1 patients.
Methods: We investigated NET production in plasma and supernatant of cultured neutrophils by measuring cell-free deoxyribonucleic acid (DNA) and myeloperoxidase (MPO)-DNA complexes with PicoGreen dye and enzyme-linked immunosorbent assay methods, respectively. We also observed NET structure by immunofluorescence staining.
Results: We found that patients with severe influenza showed elevated plasma NET level on the day of admission. Neutrophils from these patients showed higher capacity to release MPO-DNA complex in response to interleukin-8 or lipopolysaccharide stimulation. We also found that NETs from H7N9 and H1N1 patients increased the permeability of alveolar epithelial cells, and, consequently, NET production was positively correlated with acute physiology and chronic health evaluation (APACHE) II score and MODS.
Conclusions: These data indicate that high level of NETs contributes to lung injury and is correlated with severity of disease. Thus, NETs might be a key factor to predict the poor prognosis in IAV patients.
Methods: We investigated NET production in plasma and supernatant of cultured neutrophils by measuring cell-free deoxyribonucleic acid (DNA) and myeloperoxidase (MPO)-DNA complexes with PicoGreen dye and enzyme-linked immunosorbent assay methods, respectively. We also observed NET structure by immunofluorescence staining.
Results: We found that patients with severe influenza showed elevated plasma NET level on the day of admission. Neutrophils from these patients showed higher capacity to release MPO-DNA complex in response to interleukin-8 or lipopolysaccharide stimulation. We also found that NETs from H7N9 and H1N1 patients increased the permeability of alveolar epithelial cells, and, consequently, NET production was positively correlated with acute physiology and chronic health evaluation (APACHE) II score and MODS.
Conclusions: These data indicate that high level of NETs contributes to lung injury and is correlated with severity of disease. Thus, NETs might be a key factor to predict the poor prognosis in IAV patients.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 18 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 18 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 18 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 18 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


