Yang JR, Cheng CY, Chen CY, Lin CH, et al. A virus-like particle vaccination strategy expands its tolerance to H3N2 antigenic drift by enhancing neutralizing antibodies against hemagglutinin stalk. Antiviral Res 2017;140:62-75
Seasonal influenza viruses impact public health annually due to their continual evolution. However, the current inactivated seasonal vaccines provide poor protection against antigenically drifted viruses and require periodical reformulation through hit-and-miss predictions about which strains will circulate during the next season. To reduce the impact caused by vaccine mismatch, we investigated the drift-tolerance of virus-like particles (VLP) as an improved vaccine candidate. The cross-protective humoral immunity elicited by the H3N2-VLP vaccine constructed for the 2011-2012 season was examined against viruses isolated from 2010 to 2015 in Taiwan evolving chronologically through clades 1, 4, 5, 3B and 3C, as well as viruses that were circulating globally in 2005, 2007 and 2009. Mouse immunization results demonstrated that H3N2-VLP vaccine elicited superior immunological breadth in comparison with the cognate conventional whole-inactivated virus (WIV) vaccine. Titers of neutralizing antibodies against heterologous strains representing each epidemic period in the VLP group were significantly higher than in the WIV group, indicating the antibody repertoire induced by the H3N2-VLPs was insensitive to viral antigenic drift over a span of at least 10 years. Noticeably, H3N2-VLP elicited higher levels of anti-stalk antibodies than H3N2-WIV, which offset the ineffectiveness caused by antigenic drift. This advantageous effect was attributed to the uncleaved precursor of their HA proteins. These results suggest a mechanism through which VLP-induced humoral immunity may better tolerate the evolutionary dynamics of influenza viruses and point to the possible use of a VLP vaccine as a method by which the requirement for annual updates of seasonal influenza vaccines may be diminished.
See Also:
Latest articles in those days:
- Host restriction factor SAMHD1 does not restrict seasonal influenza virus replication in human epithelial or macrophage-like cells 3 hours ago
- Enhancing the stability of Influenza A reporter viruses by recoding the gfp gene 4 hours ago
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
[Go Top] [Close Window]


