Gordon NA, McGuire KL, Wallentine SK, Mohl GA, et. Divalent copper complexes as influenza A M2 inhibitors. Antiviral Res 2017;147:100-106
New M2 blockers effective against the ubiquitous amantadine-resistant S31N M2 mutation in influenza A are needed. Six copper complexes, 2, 4, 6, 8, 9, and 10, were synthesized and found to block both wild type and S31N M2. Free Cu(2+) also blocks M2 S31N but not S31N/H37A. The copper complexes do not block M2 H37A (either S31 or S31N). The complexes were effective against three influenza A strains in cell-culture assays, but less toxic to cells than CuCl2. For example 4, Cu(cyclooctylamineiminodiacetate), which was stable at pH > 4 in the buffers used, had an EC50 against A/Calif/07/2009 H1N1 of 0.7 ± 0.1 μM with a CC50 of 147 μM (therapeutic index, averaged over three strains, 67.8). In contrast, CuCl2 had an EC50 of 3.8 ± 0.9 μM and CC50 of 19 μM. Because M2 H37 is highly conserved, these complexes show promise for further testing as drugs against all strains of influenza A.
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 18 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 18 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 18 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 18 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


