Paul SS, Mok CK, Mak TM, Ng OW, et al. A cross-clade H5N1 influenza A virus neutralizing monoclonal antibody binds to a novel epitope within the vestigial esterase domain of hemagglutinin. Antiviral Res 2017 Jun 17
The sporadic outbreaks of highly pathogenic H5N1 avian influenza virus have raised public health concerns. Monoclonal antibodies (MAbs) against hemagglutinin (HA) have been increasingly used successfully for therapeutic purposes. Previously, MAb 9F4, generated against clade 1 H5N1 HA, was observed to have cross-clade neutralizing efficacy and inhibited viral entry by preventing the pH-mediated conformational change of HA. Furthermore, mouse-human chimeric MAb 9F4 was found to retain high degrees of neutralizing activity. In this study, through escape mutant generation and in-silico prediction, it was revealed that MAb 9F4 binds to a novel epitope in the vestigial esterase sub-domain of HA comprising at least three non-continuous amino acid residues, arginine (R) at position 62, tryptophan (W) at position 69 and phenylalanine (F) at position 79, which interacted with MAb 9F4 in a conformation-dependent manner. Binding and neutralization studies suggested that R62 is the critical residue for MAb 9F4 binding whereas W69 and F79 seem to cooperate with R62 to stabilize the epitope. Mutation of either R62 or W69 did not affect replicative fitness of the virus in vitro. Interestingly, MAb 9F4 retained neutralizing efficacy against a clade 2.3.2.1a H5N1 virus consisting of an arginine to lysine substitution at position 62 in HA.
See Also:
Latest articles in those days:
- Host restriction factor SAMHD1 does not restrict seasonal influenza virus replication in human epithelial or macrophage-like cells 2 hours ago
- Enhancing the stability of Influenza A reporter viruses by recoding the gfp gene 2 hours ago
- T cell help is a limiting factor for rare anti-influenza memory B cells to reenter germinal centers and generate potent broadly neutralizing antibodies 2 days ago
- Wild birds drive the introduction, maintenance, and spread of H5N1 clade 2.3.4.4b high pathogenicity avian influenza viruses in Spain, 2021-2022 2 days ago
- [preprint]FluNexus: a versatile web platform for antigenic prediction and visualization of influenza A viruses 2 days ago
[Go Top] [Close Window]


