Yi Hu, Peng Xu, Jing Luo, Hongxuan He, and Wenbin. Absolute Quantification of H5-subtype Avian Influenza Viruses Using Droplet Digital Loop-mediated Isothermal Amplification. Anal. Chem.,
Human infection with avian influenza A H5N1 viruses can cause severe diseases with high mortality rate, and continues to pose a significant threat to global public health. Rapid diagnosis is needed for identifying the types of influenza viruses for making timely treatment decisions. Here, we demonstrate absolute quantification of H5-subtype influenza viruses by digital loop-mediated isothermal amplification (dLAMP) on our recently developed cross-interface emulsification (XiE) method. Our results show that XiE-based dLAMP is highly specific and displays comparable sensitivity to real-time PCR (qPCR) and digital PCR (dPCR). Notably, dLAMP is more tolerant to inhibitory substances than PCR methods, and demonstrate similar detection efficiency to qPCR for real H5N1 samples. Therefore, it can serve as a robust and precise alternative to qPCR or dPCR, and is especially suitable for environmental and clinical samples with hard-to-remove contaminants. We believe that our dLAMP method offers great potential for rapid and accurate diagnosis of influenza and other infectious diseases
See Also:
Latest articles in those days:
- High-throughput pseudovirus neutralisation maps the antigenic landscape of influenza A/H1N1 viruses 18 hours ago
- Timely vaccine strain selection and genomic surveillance improve evolutionary forecast accuracy of seasonal influenza A/H3N2 18 hours ago
- Evaluation of a Novel Data Source for National Influenza Surveillance: Influenza Hospitalization Data in the National Healthcare Safety Network, United States, September 2021-April 2024 18 hours ago
- Scenarios for pre-pandemic zoonotic influenza preparedness and response 18 hours ago
- Stability of Avian Influenza A(H5N1) Virus in Milk from Infected Cows and Virus-Spiked Milk 2 days ago
[Go Top] [Close Window]


