-

nihao guest [ sign in / register ]
2024-3-29 4:59:04
Article

Zhao W, Liu X, Zhang X, Qiu Z, Jiao J, Li Y, Gao R. Virulence and transmission characteristics of clade 2.3.4.4b H5N6 subtype avian influenza viruses possessing different internal gene constellations. Virulence. 2023 Dec;14(1):2250065.  Abstract  
submitted by kickingbird at Dec, 9, 2023 from Virulence. 2023 Dec;14(1):2250065 (via https://www.tandfonline.com/doi/full/10.1080/21505594.2023.2)
Clade 2.3.4.4 H5N6 avian influenza virus (AIV) has been predominant in poultry in China, and the circulating haemagglutinin (HA) gene has changed from clade 2.3.4.4h to clade 2.3.4.4b in recent years. ...

Caceres CJ, Gay LC, Faccin FC, Pérez DR. Use of Reverse Genetics for the Generation of Recombinant Influenza Viruses Carrying Nanoluciferase. Methods Mol Biol. 2024;2733:47-74.  Abstract  
submitted by kickingbird at Dec, 9, 2023 from Methods Mol Biol. 2024;2733:47-74 (via https://link.springer.com/protocol/10.1007/978-1-0716-3533-9)
Influenza A (FLUAV) and influenza B (FLUBV) viruses are human and/or animal pathogens widely studied due to their importance to public health and animal production. Both FLUAV and FLUBV possess a genome ...

Kessler S, García-Sastre A, Schwemmle M, Ciminski. Reverse Genetics of Bat Influenza A Viruses. Methods Mol Biol. 2024;2733:75-86.  Abstract  
submitted by kickingbird at Dec, 9, 2023 from Methods Mol Biol. 2024;2733:75-86 (via https://link.springer.com/protocol/10.1007/978-1-0716-3533-9)
New World fruit bats were recently found to harbor two distinct and previously unknown influenza A viruses (IAVs) of the subtypes H17N10 and H18N11. Although viral genome sequences were detected in the ...

Zhang L, Shao Y, Wang Y, Yang Q, Guo J, Gao GF, De. Twenty natural amino acid substitution screening at the last residue 121 of influenza A virus NS2 protein reveals the critical role of NS2 in promoting virus genome replication by coordinating with vi. J Virol. 2023 Dec 6:e0116623.  Abstract  
submitted by kickingbird at Dec, 7, 2023 from J Virol. 2023 Dec 6:e0116623 (via https://journals.asm.org/doi/10.1128/jvi.01166-23)
The intrinsic mechanisms of influenza RNA polymerase (FluPol) in catalyzing viral genome transcription and replication have been largely resolved. However, the mechanisms of how transcription and replication ...

Chua SCJH, Cui J, Sachaphibulkij K, Tan ISL, Tan H. The ER-Golgi transport of influenza virus through NS1-Sec13 association during virus replication. Microbiol Spectr. 2023 Dec 1:e0260923.  Abstract  
submitted by kickingbird at Dec, 2, 2023 from Microbiol Spectr. 2023 Dec 1:e0260923 (via https://journals.asm.org/doi/10.1128/spectrum.02609-23)
Influenza A virus is a respiratory virus that can cause complications such as acute bronchitis and secondary bacterial pneumonia. Drug therapies and vaccines are available against influenza, albeit limited ...

Hu Y, Jiang L, Wang G, Song Y, Shan Z, Wang X, Den. M6PR interacts with the HA2 subunit of influenza A virus to facilitate the fusion of viral and endosomal membranes. Sci China Life Sci. 2023 Nov 22.  Abstract  
submitted by kickingbird at Dec, 2, 2023 from Sci China Life Sci. 2023 Nov 22 (via https://link.springer.com/article/10.1007/s11427-023-2471-4)
Influenza A virus (IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late ...

Kang S, Vu TH, Heo J, Kim C, Lillehoj HS, Hong YH. Analysis of miRNA expression in the trachea of Ri chicken infected with the highly pathogenic avian influenza H5N1 virus. J Vet Sci. 2023 Sep;24(5):e73.  Abstract  
submitted by kickingbird at Dec, 1, 2023 from J Vet Sci. 2023 Sep;24(5):e73 (via https://vetsci.org/DOIx.php?id=10.4142/jvs.23141)
Background: Highly pathogenic avian influenza virus (HPAIV) is considered a global threat to both human health and the poultry industry. MicroRNAs (miRNA) can modulate the immune system by affecting gene ...

K?nig S, Schroeder J, Nietzsche S, Heinekamp T, Br. The influenza A virus promotes fungal growth of Aspergillus fumigatus via direct interaction in vitro. Microbes Infect. 2023 Nov 24:105264.  Abstract  
submitted by kickingbird at Nov, 29, 2023 from Microbes Infect. 2023 Nov 24:105264 (via https://www.sciencedirect.com/science/article/pii/S128645792)
Seasonal influenza A virus (IAV) infections still pose a major burden for public health worldwide. Severe disease progression or even death is often related to superinfections of the virus and a secondary ...

Liao Q, Shen J, Chen Y, Shu Y. Mendelian randomization study on the causal effect of serum IgA levels on H7N9 avian influenza A virus susceptibility. J Med Virol. 2023 Nov;95(11):e29266.  Abstract  
submitted by kickingbird at Nov, 29, 2023 from J Med Virol. 2023 Nov;95(11):e29266 (via https://onlinelibrary.wiley.com/doi/10.1002/jmv.29266)
Avian influenza A viruses (IAVs) that cross the species barrier to infect humans have the potential to initiate a new pandemic. However, the host factors influencing avian IAV infection remain poorly understood. ...

Van Reeth K, Parys A, Gracia JCM, Trus I, Chiers K. Sequential vaccinations with divergent H1N1 influenza virus strains induce multi-H1 clade neutralizing antibodies in swine. Nat Commun. 2023 Nov 27;14(1):7745.  Abstract  
submitted by kickingbird at Nov, 29, 2023 from Nat Commun. 2023 Nov 27;14(1):7745 (via https://www.nature.com/articles/s41467-023-43339-3)
Vaccines that protect against any H1N1 influenza A virus strain would be advantageous for use in pigs and humans. Here, we try to induce a pan-H1N1 antibody response in pigs by sequential vaccination with ...

Komu JG, Nguyen HD, Takeda Y, Fukumoto S, Imai K,. Challenges for Precise Subtyping and Sequencing of a H5N1 Clade 2.3.4.4b Highly Pathogenic Avian Influenza Virus Isolated in Japan in the 2022-2023 Season Using Classical Serological and Molecular Met. Viruses. 2023 Nov 18;15(11):2274.  Abstract  
submitted by kickingbird at Nov, 29, 2023 from Viruses. 2023 Nov 18;15(11):2274 (via https://www.mdpi.com/1999-4915/15/11/2274)
The continuous evolution of H5Nx highly pathogenic avian influenza viruses (HPAIVs) is a major concern for accurate diagnosis. We encountered some challenges in subtyping and sequencing a recently isolated ...

Nan Chen, etc.,al. Establishment of an in vivo neutralization model based on H5N1 pseudovirus. DOI: 10.3760/cma.j.cn112309-20230206-00023.  Abstract  
submitted by kickingbird at Nov, 27, 2023 from DOI: 10.3760/cma.j.cn112309-20230206-00023 (via https://rs.yiigle.com/cmaid/1464197)
Objective To establish an in vivo infection model of H5N1 pseudovirus and to detect the neutralizing activity of FHA3 antibody using this model.Methods Based on the sequence information of hemagglutinin ...

Lijuan Zhang, etc.,al. Identification and phylogenetic analysis of five highly pathogenic avian influenza (H5N8) viruses isolated in Urumqi in 2016. DOI: 10.3760/cma.j.cn112309-20220206-00037.  Abstract  
submitted by kickingbird at Nov, 27, 2023 from DOI: 10.3760/cma.j.cn112309-20220206-00037 (via https://rs.yiigle.com/cmaid/1423213)
Objective To analyze the genetic evolution and molecular characteristics of H5N8 avian influenza viruses (AIVs) isolated from the poultry in a live poultry market (LPM) in Urumqi, Xinjiang.Methods Oropharyngeal ...

Pantin-Jackwood MJ, Spackman E, Leyson C, Youk S,. Pathogenicity in Chickens and Turkeys of a 2021 United States H5N1 Highly Pathogenic Avian Influenza Clade 2.3.4.4b Wild Bird Virus Compared to Two Previous H5N8 Clade 2.3.4.4 Viruses. Viruses. 2023 Nov 18;15(11):2273.  Abstract  
submitted by kickingbird at Nov, 27, 2023 from Viruses. 2023 Nov 18;15(11):2273 (via https://www.mdpi.com/1999-4915/15/11/2273)
Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 of the Gs/GD/96 lineage remain a major threat to poultry due to endemicity in wild birds. H5N1 HPAIVs from this lineage were detected in ...

Zhang Y, Cui P, Shi J, Chen Y, Zeng X, Jiang Y, Ti. Key Amino Acid Residues That Determine the Antigenic Properties of Highly Pathogenic H5 Influenza Viruses Bearing the Clade 2.3.4.4 Hemagglutinin Gene. Viruses. 2023 Nov 13;15(11):2249..  Abstract  
submitted by kickingbird at Nov, 27, 2023 from Viruses. 2023 Nov 13;15(11):2249. (via https://www.mdpi.com/1999-4915/15/11/2249)
The H5 subtype highly pathogenic avian influenza viruses bearing the clade 2.3.4.4 HA gene have been pervasive among domestic poultry and wild birds worldwide since 2014, presenting substantial risks to ...

Al-Shalan HAM, Hu D, Wang P, Uddin J, Chopra A, Gr. Transcriptomic Profiling of Influenza A Virus-Infected Mouse Lung at Recovery Stage Using RNA Sequencing. Viruses. 2023 Oct 31;15(11):2198.  Abstract  
submitted by kickingbird at Nov, 27, 2023 from Viruses. 2023 Oct 31;15(11):2198 (via https://www.mdpi.com/1999-4915/15/11/2198)
Influenza A virus (IAV) is known to cause mild to severe respiratory illness. Under some conditions, the infection can lead to pneumonia (viral or bacterial), acute respiratory distress syndrome, and other ...

Kong D, He Y, Wang J, Chi L, Ao X, Ye H, Qiu W, Zh. A single immunization with H5N1 virus-like particle vaccine protects chickens against divergent H5N1 influenza viruses and vaccine efficacy is determined by adjuvant and dosage. Emerg Microbes Infect. 2023 Nov 23:2287682.  Abstract  
submitted by kickingbird at Nov, 27, 2023 from Emerg Microbes Infect. 2023 Nov 23:2287682 (via https://www.tandfonline.com/doi/full/10.1080/22221751.2023.2)
The H5N1 subtype highly pathogenic avian influenza virus (HPAIV) reveals high variability and threatens poultry production and public health. To prevent the spread of H5N1 HPAIV, we developed an H5N1 virus-like ...

Rabie-Rudsari M, Behboudi E, Ranjkesh A, Kaveh K,. Molecular identification of Neuraminidase Gene Mutations in Influenza A/H1N1 and A/H3N2 Isolates of Mazandaran province, north of Iran. J Glob Antimicrob Resist. 2023 Nov 20:S2213-7165(2.  Abstract  
submitted by kickingbird at Nov, 27, 2023 from J Glob Antimicrob Resist. 2023 Nov 20:S2213-7165(2 (via https://www.sciencedirect.com/science/article/pii/S221371652)
Objectives: The neuraminidase (NA) mutations causing resistance to NA inhibitors (NAIs) mostly compromise the fitness of influenza viruses. Considering the importance of these mutations, constant monitoring ...

Baechlein C, Kleinschmidt S, Hartmann D, Kammeyer. Neurotropic Highly Pathogenic Avian Influenza A(H5N1) Virus in Red Foxes, Northern Germany. Emerg Infect Dis. 2023 Dec;29(12):2509-2512.  Abstract  
submitted by kickingbird at Nov, 22, 2023 from Emerg Infect Dis. 2023 Dec;29(12):2509-2512 (via https://pubmed.ncbi.nlm.nih.gov/37987587/)
In a 1-year survey of wild terrestrial predators in northern Germany, we found that 5 of 110 foxes were infected with contemporary avian influenza A(H5N1) viruses, forming a temporal cluster during January?March ...

Bessière P, Hayes B, Filaire F, Lèbre L, Vergne T,. Optimizing environmental viral surveillance: bovine serum albumin increases RT-qPCR sensitivity for high pathogenicity avian influenza H5Nx virus detection from dust samples. Microbiol Spectr. 2023 Nov 20:e0305523.  Abstract  
submitted by kickingbird at Nov, 21, 2023 from Microbiol Spectr. 2023 Nov 20:e0305523 (via https://journals.asm.org/doi/10.1128/spectrum.03055-23)
With the circulation of high pathogenicity avian influenza viruses having intensified considerably in recent years, the European Union is considering the vaccination of farmed birds. A prerequisite for ...

5083 items, 20/Page, Page[7/255][|<<] [|<] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [>|] [>>|]

Related Pages:

Browse by Category
Learn about the flu news, articles, events and more
Subscribe to the weekly F.I.C newsletter!


  

Site map  |   Contact us  |  Term of use  |  FAQs |  粤ICP备10094839号-1
Copyright ©www.flu.org.cn. 2004-2024. All Rights Reserved. Powered by FIC 4.0.1
  Email:webmaster@flu.org.cn