Aryl hydrocarbon receptor targets pathways extrinsic to bone marrow cells to enhance neutrophil recruitment during influenza virus infection

There is growing evidence that neutrophils influence host resistance during influenza virus infection; however factors that regulate neutrophil migration to the lung during viral infection are unclear. Activation of the aryl hydrocarbon receptor (AhR) by the pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin) results in an increased number of neutrophils in the lung after influenza virus infection. The mechanism of AhR-mediated neutrophilia does not involve elevated levels of soluble neutrophil chemoattactants, up-regulated adhesion molecules on pulmonary neutrophils, delayed neutrophil apoptosis, or increased vascular damage. In this study, we determined whether AhR activation increases neutrophil numbers systemically or only in the infected lung, and whether AhR-regulated events within the hematopoietic system underlie the dioxin-induced increase in pulmonary neutrophils observed during influenza virus infection. We report here that AhR activation does not increase neutrophil numbers systemically or increase neutrophil production in hematopoietic tissue, suggesting that the elevated number of neutrophils is restricted to the site of antigen challenge. The generation of CD45.2AhR(-/-)-->CD45.1AhR(+/+) bone marrow chimeric mice demonstrates that even when hematopoietic cells lack the AhR, TCDD treatment still results in twice as many pulmonary neutrophils compared to control-treated, infected CD45.2AhR(-/-)-->CD45.1AhR(+/+) chimeric mice. This finding reveals that AhR-mediated events extrinsic to bone marrow-derived cells affect the directional migration of neutrophils to the infected lung. These results suggest that the lung contains important and heretofore overlooked targets of AhR regulation, unveiling a novel mechanism for controlling neutrophil recruitment to the infected lung.