This study theoretically explores the mechanism of action of Chicoric acid against influenza virus based on network pharmacology, molecular docking, and molecular dynamics simulation techniques, aiming to provide insights for the development of new veterinary drugs for influenza. Potential targets for influenza virus action were identified using the PharmMapper (i.e. Version 2017) server and disease databases including GeneCards and OMIM. The STRING online analysis platform and Cytoscape 3.9.1 software were employed to construct a protein–protein interaction (PPI) network of the target proteins, followed by topological analysis to screen for key targets. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the intersecting targets using the DAVID database. A “drug–target–pathway” network diagram was constructed using Cytoscape 3.9.1 software. Molecular docking was carried out with AutoDock 1.5.6 and PyMOL 2.5 software to identify dominant binding targets, followed by molecular dynamics simulation analysis. The results of network analysis showed that there were 31 potential targets of Chicoric acid; the protein interaction network suggested that UBC, UBA52, RPS27A, HCK, and CDKN1B may be the core targets of Chicoric acid; 55 cell biological processes were obtained by GO enrichment analysis, and 15 related signaling pathways were obtained by KEGG pathway enrichment analysis; molecular docking showed that UBC and UBA52 had a good affinity to Chicoric acid and may be the dominant target of Chicoric acid exerting its effect. Chicoric acid may play a role in antiviral activity by acting on the dominant protein of UBC and UBA52, thus achieving an anti-influenza virus effect.