SOCS3-deficient Lung Epithelial Cells Uptaking Neutrophil-Derived SOCS3 Worsens Lung Influenza Infection

Suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of TBK1 and interferon pathway and the expression of SOCS3 is closely correlated with symptoms of influenza patients. However, whether deletion of Socs3 in the lung epithelial cells would affect influenza lung replication and inflammation in vivo is unknown. To test this, we approached the influenza infected Socs3f/f and SpcCre.Socs3f/f mice. We first found that knockdown of Socs3 in lung epithelial cells reduced influenza replication. However, in the in vivo study, there was a reduction of SOCS3 in the influenza-infected neutrophils coincided with an increase of SOCS3 in the CD45-CD326+ lung epithelial cells in PR8-infected SpcCre.Socs3f/f mice. SOCS3-deficient neutrophils expressed higher levels of IL-17 that enhanced chemokine expression in the lung epithelial cells. Lung SOCS3-dificient epithelial cells increased expression of GM-CSF and PGE2 which promoted SpcCre.Socs3f/f neutrophils to yield SOCS3. SpcCre.Socs3f/f lung epithelial cells internalized SOCS3 released from GM-CSF + PGE2-stimulated SpcCre.Socs3f/f neutrophils, which could boost influenza replication in the lung epithelial cells. Thus, in the in vivo study, deletion of SOCS3 from lung epithelium could be nullified by the uptake from SOCS3 from infiltrated neutrophils. In addition, deletion of Socs3 from myeloid cells reduced lung influenza infection, but increased lung inflammation. Taken together, deletion of SOCS3 could suppress influenza replication, but intracellular SOCS3 communication between neutrophils and lung epithelial cells confounds this effect.